HAPPI publications

Published Baker, H et al. 2018. Higher CO2 concentrations increase extreme event risk in a 1.5 °C worldNature Climate Change. doi.org/10.1038/s41558-018-0190-1 Barcikowska, M et al. 2017. Euro-Atlantic winter storminess and precipitation extremes under 1.5 °C versus 2 °C warming scenarios. Earth System Dynamics. doi.org/10.5194/esd-2017-106 Chevuturi, A et al. 2018. Projected Changes in the Asian‐Australian Monsoon Region in 1.5°C and 2.0°C Global‐Warming Scenarios. Earth’s Future. doi.org/10.1002/2017EF000734 Doell, P et al. 2018. Risks for the global freshwater system at 1.5°C and 2°C global warming. Environmental Research Letters. doi.org/10.1088/1748-9326/aab792 Faye, B et al. 2018. Impacts of 1.5 versus 2.0 °C on cereal yields in the West African Sudan Savanna. Environmental Research Letters. 13(034014). doi.org/10.1088/1748-9326/aaab40 Harrington, L., and Otto, F. 2018. Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5 °C and 2 °C of warming. Environmental Research Letters. 13(034011). doi.org/10.1088/1748-9326/aaaa99 Hirsch, A et al. 2018. Biogeophysical Impacts of Land-Use Change on Climate Extremes in Low-Emission Scenarios: Results From HAPPI-Land. Earth’s Future. doi.org/10.1002/2017EF000744 Hosking, A et al. 2018. Changes in European wind energy generation potential within a 1.5°C warmer world. Environmental Research Letters. doi.org/10.1088/1748-9326/aabf78 Iversen, T et al. 2017. The “NorESM1-Happi” used for evaluating differences between a global warming of 1.5°C and 2°C, and the role of Arctic Amplification. Earth System Dynamics. doi.org/10.5194/esd-2017-115. Accepted King et al. 2017. On the linearity of local and regional temperature changes from 1.5°C to 2°C of global warming. Journal of Climate. doi.org/10.1175/JCLI-D-17-0649.1 Lee, D et al. 2018. Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics. Environmental Research Letters. doi.org/10.1088/1748-9326/aab55d Lewis, S et al. 2017. Australia’s unprecedented future temperature extremes under Paris limits to warming. Geophysical Research Letters. 44(19), 9947–9956. doi.org/10.1002/2017GL07461 Li, C et al. 2018. Midlatitude atmospheric circulation responses under 1.5°C and 2°C warming and implications for regional impacts. Earth System Dynamics. doi.org/10.5194/esd-9-359-2018 Liu, W et al. 2018. Global Freshwater availability below normal conditions and population impact under 1.5˚C and 2˚C stabilization scenarios. Geophysical Research Letters. doi.org/10.1029/2018GL078789 Madakumbura, G et al. 2019. Event-to-event intensification of hydrologic cycle in 1.5 and 2 °C warmer worlds. Nature. doi.org/10.1038/s41598-019-39936-2 Mitchell, D et al. 2018. Extreme heat-related mortality avoided under Paris Agreement goals. Nature Climate Change. doi.org/10.1038/s41558-018-0210-1 Mitchell, D et al. 2017. Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design. Geoscientific Model Development. 10, 571-583. doi.org/10.5194/gmd-10-571-2017 Mitchell, D et al. 2016. Realizing the impacts of a 1.5°C warmer world. Nature Climate Change. 6, 735-737. doi.org/10.1038/nclimate3055 Mitchell, D et al. 2018. The myriad challenges of the Paris Agreement. Philosophical Transactions of The Royal Society A. 376(2119). doi.org/10.1098/rsta.2018.0066 Pretis, F et al. 2017. Uncertain Impacts on Economic Growth When Stabilizing Global Temperatures at 1.5°C or 2°C Warming. Philosophical Transactions of the Royal Society A. doi.org/10.1098/rsta.2016.0460 Rosenzweig, C et al. 2018. Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments. Philosophical Transactions of The Royal Society A. 376(2119). doi.org/10.1098/rsta.2016.0455 Ruane, A et al. 2018. Climate shifts for major agricultural seasons in +1.5 °C and +2.0 °C Worlds: HAPPI projections and AgMIP modeling scenarios. Agricultural and Forest Meteorology. doi.org/10.1016/j.agrformet.2018.05.013 Ruane, A et al. 2018. Biophysical and economic implications for agriculture of +1.5° and +2.0°C global warming using AgMIP Coordinated Global and Regional Assessments. Climate Research. doi.org/10.3354/cr01520 Russo, S et al. 2019. Half a degree and rapid socioeconomic development matter for heatwave risk. Nature Communications. doi.org/10.1038/s41467-018-08070-4 Saeed, F et al. 2018. Robust changes in tropical rainy season length at 1.5°C. Environmental Research Letters. doi.org/10.1088/1748-9326/aab797 Schleussner, C-F et al. 2018. Crop productivity changes at 1.5°C and 2°C under climate response uncertainty. Environmental Research Letters. doi.org/10.1088/1748-9326/aab63b Seneviratne, S et al. 2018. Climate extremes, land– climate feedbacks and land-use forcing at 1.5°C. Philosophical Transactions of The Royal Society A. 376(2119). doi.org/10.1098/rsta.2016.0450 Uhe, P et al. Enhanced flood risk with 1.5C global warming in the Ganges-Brahmaputra-Meghna basin. ERL. doi.org/10.1088/1748-9326/ab10ee Wehner, M et al. 2018. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble. Earth System Dynamics. 9(1), 299-311. doi.org/10.5194/esd-9-299-2018 Wehner, M et al. 2018. Changes in tropical cyclones under stabilized 1.5°C and 2.0°C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols. Earth System Dynamics. 9(1), 187-195. doi.org/10.5194/esd-9-187-2018 In review Dongnan, J et al. 2018. Reduced Reference Evapotranspiration and Aridity from 0.5°C Less Warming in the Yellow River Basin, China. Water Resources Research. Submitted Gaupp et al. Increasing risks of multiple breadbasket failure under 1.5 and 2°C global warming. Agricultural Systems. Accepted Lewis, S et al. 2019. Regional hotspots of temperature extremes under 1.5°C and 2°C of global mean warming. Weather and Climate Extremes. Submitted Mollard, J., Klingaman, N. 2017. The influence of air-sea feedbacks on projections of 1.5°C and 2°C warming scenarios. Climate Dynamics. Submitted Rimi, R et al. 2018. Risks of seasonal extreme rainfall events in Bangladesh under 1.5 and 2.0 degrees’ warmer worlds – How anthropogenic aerosols change the story. Hydrology and Earth System Sciences. In review. doi.org/10.5194/hess-2018-400 Saeed, F et al. 2018. Bias correction of multi-ensemble simulations from the HAPPI model intercomparison project. In review Shiogama et al. 1.5°C goal of Paris agreement will reduce inequities in extreme climate hazards. Nature Comms. Submitted In preparation Lo et al. Current commitment to climate change heat-health extremes. Uhe et al. Comparisons of methods across difference climate projection techniques  

1.5 degree information

A set of 27 climate extremes indices as defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) is being calculated for the HAPPI simulations for the various experiments and models. The definitions and some applications of these indices can be found in Sillmann et al. (2013a, 2013b). If you are interested in using the ETCCDI extremes indices from the HAPPI simulations, please contact Jana Sillmann (jana.sillmann@cicero.oslo.no) and Nathalie Schaller (nathalie.schaller@cicero.oslo.no).

Climate Analytics key points in the 1.5 degree negotiations

climateprediction.net 

C20C

ISI-MIP

DA-MIP